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During  last  decade,  organic  photovoltaics  experienced
an exciting renaissance[1−5],  mainly benefiting from the devel-
opment  of  non-fullerene  acceptors  (NFAs),  which  boosted
the  power  conversion  efficiency  to  ~20%[6, 7].  Along  with  the
unprecedented success of organic solar cells, non-fullerene ac-
ceptors also find other optoelectronic applications. In particu-
lar,  high-performance  organic  photodetectors  (OPDs)[8, 9]

based on non-fullerene acceptors have been reported.
Conventional  organic  photodetectors  normally  possess

broadband  photoresponse,  and  the  response  spectra  cover-
ing  ultraviolet  and  visible  regions.  These  OPDs  do  not  have
any  photoresponse  to  near-infrared  (NIR)  light[10−12].  Hence,
these  organic  devices  cannot  fully  replace  Si-based photode-
tectors  in  most  cases.  With  narrow-bandgap  (Eg)  NFAs,  the
photodetection  window  of  OPDs  can  be  extended  up  to
~1100  nm,  which  is  comparable  to  silicon  devices[13, 14].  Li
et al. incorporated a novel NFA COi8DFIC into ternary bulk he-
terojunction (BHJ), and achieved an ultra-broadband photore-
sponse (Fig.  1(a))  with compelling stability,  fast  response and
relatively  high  detectivity[14].  More  recently,  Liao et  al. de-
veloped  a  novel  NFA  FDTPC-OD  with  narrow  bandgap,  high
mobility, and the obtained OPDs exhibited relatively high spe-
cific detectivity (Fig. 1(b)) and low dark current[15].

In terms of bandwidth modulation, another topic is filter-
less narrowband photodetection[16, 17], which is crucial for col-
or discrimination. An approach called charge collection narrow-
ing  (CCN)  was  reported  to  effectively  narrow  photoresponse
bandwidth via modulating  charge  transport  and  film  thick-
ness[18, 19].  Xie et  al. constructed  a  hierarchical  device  struc-
ture  and  manipulated  the  dissociation  efficiency  of  excitons
generated  by  various  wavelengths  of  incident  light  to
achieve  self-filtering  narrowband  OPDs  (Fig.  1(c))[20].  Further-
more,  Yang et  al.  continuously  tuned  detection  windows
from  660  to  1510  nm  by  designing  proper  resonant  optical
cavity[21].  These  devices  exhibited  extremely  small  full  wid-
th  at  half-maximum  (FWHM)  and  high  specific  detectivity
(Figs. 1(d)–1(f)).

Compared  with  inorganic  photodetectors,  the  perform-
ance of  OPDs is  limited by the poor charge transport  and ex-
citon  dissociation,  which  results  in  relatively  low  responsivity

(R)  and  external  quantum  efficiency  (EQE).  Photomultiplica-
tion-type  (PM-type)  OPDs  were  developed  to  effectively  en-
hance  the  sensitivity  of  OPDs,  which  was  realized  by  tuning
the  trap  states  and  charge  carrier  tunneling  in  fullerene-
based  BHJs.  Wang et  al. made  PM-type  OPDs  based  on  DC-
IDT2T.  The  devices  exhibited  high  EQE  and  superior  stability
(Fig.  2(a))[22].  Yang et  al.  added a small  amount of  liquid crys-
tal,  BTR,  into  the  active  layer  to  adjust  the  packing  of  poly-
mer donor, and the device performance was improved by the
increase  of  hole  transport  in  the  active  layer  (Fig.  2(b))[23].
Moreover, Liu et al. imbedded less Bod Ethex-Hex (BEH) in poly-
mer  donor  matrix  to  form  many  isolated  electron  traps  and
realized  a  response  peak  at  850  nm  with  a  FWHM  of  27  nm
(Fig.  2(c))[24].  Bai et  al.  analyzed  the  working  mechanism  of
PM-type OPDs by using multiple transient techniques[25].

Organic  phototransistors  (OPTs)  also  attract  attention
due  to  the  controllable  gain  and  excellent  compatibility  with
read-out  circuits[26−29].  However,  most  of  the reported photo-
transistors  were  based  on  p-type  channel.  By  using  non-
fullerene  acceptors,  n-type  phototransistors  have  been  ob-
tained.  Liu et  al. made  conformal  OPT  arrays  based  on  air-
stable  n-type  PTCDI-C13H27.  These  OPT  arrays  showed  excel-
lent performance,  good stability (Fig.  2(d))[30].  Furthermore,  Li
et al. demonstrated solution-processed NIR OPTs based on an
air-stable  n-type  BODIPY-BF2.  The  devices  showed  remark-
able performance with high photoresponsivity and photocur-
rent/dark  current  ratio,  and  they  can  detect  weak  NIR  irradi-
ation (Figs. 2(e) and 2(f))[31].

We  compare  the  performance  of  photodiodes,  PM-type
OPDs  and  phototransistors  in Table  1.  There  is  space  for  fur-
ther  improving the device  stability  for  real  applications.  NFA-
based OPDs are definitely an interesting direction.
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Fig.  1.  (Color  online)  The performance of  non-fullerene OPDs.  (a)  COi8DFIC;  (b)  FDTPC-OD.  Reproduced with  permission[14, 15],  Copyright  2019
and 2022, Wiley. (c) OPDs based on Y6 and IEICO-4F. Reproduced with permission[20], Copyright 2020, Nature Publishing Group. (d) Schematic for
the cavity-enhanced OPDs; (e) comparison of the absorption coefficients of various BHJs; (f) the narrowband EQE spectra. Reproduced with per-
mission[21], Copyright 2021, American Chemical Society.

Table 1.   Performance data for different devices.

Type Material Detection window (nm) Response time Dark current D*  (Jones) / R (A/W) Ref.

Photodiode

COi8DFIC 400–1000 900 ns 10–5 A/cm2 @ –1 V 7 × 1011/0.35 [14]
FDTPC-OD 300–1000 37.2 μs 8 × 10–11 A 2.5 × 1011/0.4 [15]
IEICO-4F 350–1000 1.56 μs 1.14 × 10–9 A/cm2 @ –0.5 V 8.8 × 1011/0.12 [32]
Y6 300–950 1.1 μs 5.81 × 10–9 A/cm2 @ –0.1 V 1.16 × 1013/0.5 [33]
Y6 800–1000 – 10–7 A/cm2 @ –1.5 V 1.2 × 1013/– [20]
O-FBR 350–800 12 μs 1.7 × 10–10 A/cm2 @ –2 V 9.6 × 1012/0.34 [34]

PM-type OPD

DC-IDT2T 300–800 – 10–6 A/cm2 @ –10 V 1.43 × 1014/131.4 [22]
BEH 800–900 624 ms 2 × 10–6 A/cm2 @ –13 V 8.8 × 1011/– [24]
ETBI-H 300–700 347 μs 2 × 10–5 A/cm2 @ –20 V 2.6 × 1012/– [35]
BTR: BTPV-4F 300–750 4 ms 4 × 10–6 A/cm2 @ –10 V 4.67 × 1010/102 [23]

Phototransistor

PTCDI-C13H27 400–640 – 1 × 10–13 A –/30.73 [30]
BODIPY-BF2 300–1100 – 2 × 10–11 A –/1.14 × 104 [31]
PTCDI-C8 300–1200 – 1 × 10–12 A 2.85 × 1011/24.12 [36]
P(NDI2OD-T2) 300–800 1.5 s 1 × 10–10 A 3.95 × 1013/34.8 [37]
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